MLRelated.com
Imagine Conference

Why use Area under the curve? (AUC - ROC)

Leonard Dieguez September 12, 2023

In scenarios with imbalanced datasets, ROC curves and AUC-ROC scores are valuable tools for assessing and comparing the performance of machine learning classifiers. They help provide insights into a model's ability to distinguish between classes and can guide decision-making regarding threshold selection.


Machine Learning Models Basic Performance Metrics

Leonard Dieguez June 10, 2023

When analyzing data using ML, a suitable model is selected based on the task. Classifier models learn from labeled training data and predict discrete classes, while regression models learn from training data and predict continuous values. To evaluate the performance of machine learning models, various metrics are used. These include accuracy, precision, recall, F1 score, AUC-ROC, MAE, MSE, and R-squared. The choice of metrics depends on the specific problem and the nature of the data. Visualization tools such as confusion matrices, ROC curves, precision-recall curves and others can be used to gain insights into the performance of classifiers and understand their behavior. When dealing with imbalanced data, using accuracy as an evaluation metric can be misleading. Accuracy does not account for class imbalance, it may overestimate the performance. It is important to consider other metrics such as AUC and others which provide a more comprehensive evaluation performance in imbalanced datasets.


Machine Learning Models Basic Performance Metrics

Leonard Dieguez June 10, 2023

When analyzing data using ML, a suitable model is selected based on the task. Classifier models learn from labeled training data and predict discrete classes, while regression models learn from training data and predict continuous values. To evaluate the performance of machine learning models, various metrics are used. These include accuracy, precision, recall, F1 score, AUC-ROC, MAE, MSE, and R-squared. The choice of metrics depends on the specific problem and the nature of the data. Visualization tools such as confusion matrices, ROC curves, precision-recall curves and others can be used to gain insights into the performance of classifiers and understand their behavior. When dealing with imbalanced data, using accuracy as an evaluation metric can be misleading. Accuracy does not account for class imbalance, it may overestimate the performance. It is important to consider other metrics such as AUC and others which provide a more comprehensive evaluation performance in imbalanced datasets.


Why use Area under the curve? (AUC - ROC)

Leonard Dieguez September 12, 2023

In scenarios with imbalanced datasets, ROC curves and AUC-ROC scores are valuable tools for assessing and comparing the performance of machine learning classifiers. They help provide insights into a model's ability to distinguish between classes and can guide decision-making regarding threshold selection.


Imagine Conference